Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Langmuir-Blodgett Films of Pyridyldithio-Modified Multiwalled Carbon Nanotubes as a Support to Immobilize Hydrogenase

Identifieur interne : 000112 ( Russie/Analysis ); précédent : 000111; suivant : 000113

Langmuir-Blodgett Films of Pyridyldithio-Modified Multiwalled Carbon Nanotubes as a Support to Immobilize Hydrogenase

Auteurs : RBID : Pascal:10-0315645

Descripteurs français

English descriptors

Abstract

Pyridylthio-modified multiwalled carbon nanotubes (pythio-MWNTs) have been prepared by a reaction of the oxidized MWNTs with S-(2-aminoethylthio)-2-thiopyridine hydrochloride. The obtained pythio-MWNTs nanocomposites formed stable floating monolayers at the air-water interface, which were transferred onto substrate surfaces by the Langmuir-Blodgett (LB) method. Compositions and morphologies of the LB films were characterized by absorption, Raman, X-ray photoelectron spectra as well as by scan electron microscopy and atomic force microscopy. These pythio-MWNTs LB films were then used as a support to immobilize hydrogenase (H2ase) to form bionano-composite of pythio-MWNTs-H2ase. Cyclic voltammograms for indium tin oxide electrode covered with the pythio-MWNTs-H2ase films were investigated in both Ar and H2 saturated 0.05 M KCI electrolyte solutions at pH from 4.0 to 9.0. A reversible redox couple of [4Fe-4S]2 clusters of H2ase was recorded when the pH value was 6.0 and 9.0, with reduction and oxidation potentials appearing at about -0.70 and -0.35 V vs Ag/AgCl, respectively. It was revealed that the H2ase was of high catalytic activity and strong stability in the LB films of pythio-MWNTs-H2ase. Hence, we suggested that the present bionanocomposites could be used as heterogeneous biocatalyst to catalyze reversible reaction between protons and H2, resulting in potential applications in biohydrogen evolution and H2 biofuel cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0315645

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Langmuir-Blodgett Films of Pyridyldithio-Modified Multiwalled Carbon Nanotubes as a Support to Immobilize Hydrogenase</title>
<author>
<name>QING SUN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Fudan University, 220 Handan Road</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200433</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zorin, Nikolay A" uniqKey="Zorin N">Nikolay A. Zorin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of basis Biological Problems, Russian Academy of Sciences</s1>
<s2>Pushchino, Mascow Region 142290</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Pushchino, Mascow Region 142290</wicri:noRegion>
</affiliation>
</author>
<author>
<name>DAN CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Macromolecular Science, Fudan University, 220 Handan Road</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200433</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MENG CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Fudan University, 220 Handan Road</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200433</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tian Xi" uniqKey="Liu T">Tian-Xi Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Macromolecular Science, Fudan University, 220 Handan Road</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200433</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miyake, Jun" uniqKey="Miyake J">Jun Miyake</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Mechanical Science and Bioengtneering, Graduate School of Engineering Science, University of Osaka, 1-3 Machikane-Yama</s1>
<s2>Toyonaka, Osaka 560-8531</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Toyonaka, Osaka 560-8531</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, Dong Jin" uniqKey="Qian D">Dong-Jin Qian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Fudan University, 220 Handan Road</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200433</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0315645</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0315645 INIST</idno>
<idno type="RBID">Pascal:10-0315645</idno>
<idno type="wicri:Area/Main/Corpus">004252</idno>
<idno type="wicri:Area/Main/Repository">003E07</idno>
<idno type="wicri:Area/Russie/Extraction">000112</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air water interface</term>
<term>Atomic force microscopy</term>
<term>Biocatalyst</term>
<term>Carbon nanotubes</term>
<term>Catalytic reaction</term>
<term>Chemical reduction</term>
<term>Composite material</term>
<term>Composition</term>
<term>Electrodes</term>
<term>Electrolyte solution</term>
<term>Electron microscopy</term>
<term>Film</term>
<term>Gas liquid interface</term>
<term>Indium oxide</term>
<term>Langmuir Blodgett method</term>
<term>Monolayer</term>
<term>Morphology</term>
<term>Multiwalled nanotube</term>
<term>Nanocomposite</term>
<term>Oxidation</term>
<term>Photoelectron</term>
<term>Potential</term>
<term>Proton</term>
<term>Stability</term>
<term>Substrate</term>
<term>Support</term>
<term>Tin oxide</term>
<term>Transition element compounds</term>
<term>X ray</term>
<term>pH</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nanotube multifeuillets</term>
<term>Nanotube carbone</term>
<term>Nanocomposite</term>
<term>Couche monomoléculaire</term>
<term>Interface air eau</term>
<term>Interface gaz liquide</term>
<term>Substrat</term>
<term>Méthode Langmuir Blodgett</term>
<term>Composition</term>
<term>Morphologie</term>
<term>Film</term>
<term>Rayon X</term>
<term>Photoélectron</term>
<term>Microscopie électronique</term>
<term>Microscopie force atomique</term>
<term>Support</term>
<term>Matériau composite</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Electrode</term>
<term>Solution électrolyte</term>
<term>pH</term>
<term>Réduction chimique</term>
<term>Oxydation</term>
<term>Potentiel</term>
<term>Composé de métal de transition</term>
<term>Réaction catalytique</term>
<term>Stabilité</term>
<term>Biocatalyseur</term>
<term>Proton</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau composite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pyridylthio-modified multiwalled carbon nanotubes (pythio-MWNTs) have been prepared by a reaction of the oxidized MWNTs with S-(2-aminoethylthio)-2-thiopyridine hydrochloride. The obtained pythio-MWNTs nanocomposites formed stable floating monolayers at the air-water interface, which were transferred onto substrate surfaces by the Langmuir-Blodgett (LB) method. Compositions and morphologies of the LB films were characterized by absorption, Raman, X-ray photoelectron spectra as well as by scan electron microscopy and atomic force microscopy. These pythio-MWNTs LB films were then used as a support to immobilize hydrogenase (H
<sub>2</sub>
ase) to form bionano-composite of pythio-MWNTs-H
<sub>2</sub>
ase. Cyclic voltammograms for indium tin oxide electrode covered with the pythio-MWNTs-H
<sub>2</sub>
ase films were investigated in both Ar and H
<sub>2</sub>
saturated 0.05 M KCI electrolyte solutions at pH from 4.0 to 9.0. A reversible redox couple of [4Fe-4S]
<sup>2</sup>
clusters of H
<sub>2</sub>
ase was recorded when the pH value was 6.0 and 9.0, with reduction and oxidation potentials appearing at about -0.70 and -0.35 V vs Ag/AgCl, respectively. It was revealed that the H
<sub>2</sub>
ase was of high catalytic activity and strong stability in the LB films of pythio-MWNTs-H
<sub>2</sub>
ase. Hence, we suggested that the present bionanocomposites could be used as heterogeneous biocatalyst to catalyze reversible reaction between protons and H
<sub>2</sub>
, resulting in potential applications in biohydrogen evolution and H
<sub>2</sub>
biofuel cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Langmuir-Blodgett Films of Pyridyldithio-Modified Multiwalled Carbon Nanotubes as a Support to Immobilize Hydrogenase</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>QING SUN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZORIN (Nikolay A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DAN CHEN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MENG CHEN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIU (Tian-Xi)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MIYAKE (Jun)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>QIAN (Dong-Jin)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, Fudan University, 220 Handan Road</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of basis Biological Problems, Russian Academy of Sciences</s1>
<s2>Pushchino, Mascow Region 142290</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Macromolecular Science, Fudan University, 220 Handan Road</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Mechanical Science and Bioengtneering, Graduate School of Engineering Science, University of Osaka, 1-3 Machikane-Yama</s1>
<s2>Toyonaka, Osaka 560-8531</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>10259-10265</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000170534981490</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0315645</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Pyridylthio-modified multiwalled carbon nanotubes (pythio-MWNTs) have been prepared by a reaction of the oxidized MWNTs with S-(2-aminoethylthio)-2-thiopyridine hydrochloride. The obtained pythio-MWNTs nanocomposites formed stable floating monolayers at the air-water interface, which were transferred onto substrate surfaces by the Langmuir-Blodgett (LB) method. Compositions and morphologies of the LB films were characterized by absorption, Raman, X-ray photoelectron spectra as well as by scan electron microscopy and atomic force microscopy. These pythio-MWNTs LB films were then used as a support to immobilize hydrogenase (H
<sub>2</sub>
ase) to form bionano-composite of pythio-MWNTs-H
<sub>2</sub>
ase. Cyclic voltammograms for indium tin oxide electrode covered with the pythio-MWNTs-H
<sub>2</sub>
ase films were investigated in both Ar and H
<sub>2</sub>
saturated 0.05 M KCI electrolyte solutions at pH from 4.0 to 9.0. A reversible redox couple of [4Fe-4S]
<sup>2</sup>
clusters of H
<sub>2</sub>
ase was recorded when the pH value was 6.0 and 9.0, with reduction and oxidation potentials appearing at about -0.70 and -0.35 V vs Ag/AgCl, respectively. It was revealed that the H
<sub>2</sub>
ase was of high catalytic activity and strong stability in the LB films of pythio-MWNTs-H
<sub>2</sub>
ase. Hence, we suggested that the present bionanocomposites could be used as heterogeneous biocatalyst to catalyze reversible reaction between protons and H
<sub>2</sub>
, resulting in potential applications in biohydrogen evolution and H
<sub>2</sub>
biofuel cells.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06D03E</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Nanotube multifeuillets</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Multiwalled nanotube</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanotube carbone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Carbon nanotubes</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche monomoléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Monolayer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capa monomolecular</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Interface air eau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Air water interface</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Interfase aire agua</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Interface gaz liquide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Gas liquid interface</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Interfase gas líquido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Substrat</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Substrate</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Substrato</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode Langmuir Blodgett</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Langmuir Blodgett method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método Langmuir Blodgett</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Composition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Composicion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Film</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Film</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Película</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Rayon X</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>X ray</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Rayos X</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Photoélectron</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Photoelectron</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fotoelectrón</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Microscopie électronique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Electron microscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Microscopía electrónica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Support</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Support</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Soporte</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Matériau composite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Composite material</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Material compuesto</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Solution électrolyte</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Electrolyte solution</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Solución electrólito</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>pH</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>pH</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>pH</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Réduction chimique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Chemical reduction</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Reducción química</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Potentiel</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Potential</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Potencial</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Réaction catalytique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Catalytic reaction</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Reacción catalítica</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Stabilité</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Stability</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Estabilidad</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Biocatalyseur</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Biocatalyst</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Biocatalizador</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Proton</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Proton</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Protón</s0>
<s5>30</s5>
</fC03>
<fN21>
<s1>200</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:10-0315645
   |texte=   Langmuir-Blodgett Films of Pyridyldithio-Modified Multiwalled Carbon Nanotubes as a Support to Immobilize Hydrogenase
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024